Chapter 4

P———

Advanced Microprocessor

* Intel X86 family of advanced Microprocessor
* Programming model for 86 family.

» X85 addressing modes, instruction set,
hardware.

* Motorola 68 XXX family of microprocessor
* 68 XXX addressing modes
e Instruction set and hardware.

P———

80x86 Processor Architecture

8085 (review) - typical, single segment
8086/88 - pipeline + segments
80286/386 - real(8086)/protected mode
80386 - MMU (+paging)

80486 - cache memory

Pentium
P6 (Pentium Pro, |1, Celeron, 111, Xeon, ...)
Pentium 4, Core 2 - 64 bit extension

8086 and 8088 Processors

Processor Model: BIU+EU

Programming Model:
Data Registers + Segments

Memory Banks Issues

8086: IA standara

* Became available in 1978
e 16-bit registers (8-/16-bit operations) +16-bit data bus
e 20-bit address bus (was 16-bit for 8080, 64K => 1M)

e memory organization: 64KB segments (1 MB limit)
« CS (code segment), DS (data), SS (stack), ES (extra segment)

* Re-organize CPU into BIU (bus interface unit) and
EU (execution unit) [Fig 3.1, p.74, John Uffenbeck, 2ed]
e Allow fetch and execution simultaneously
* Internal register expanded to 16-bit

e Allow access of low/high byte simultaneously or separately
e Two Memory banks for odd/even-byte access

8088: PC standard

* Became available in 1979, almost identical to 8086
* 8-bit data bus: for hardware compatibility with 8080
* 16-bit internal registers and data bus (same as 8086)

* 20-bit address bus (was 16-bit for 8080)
e BIU re-designed
* memory organization: 64KB segments (1 MB limit)

e Two memory accesses for 16-bit data (less efficient)
e But less costly

* 8088: used by IBM PC (1982), 16K-64K, 4.77MHz

6, 80188: High Integration

CPU

* PC system:
e 8088 CPU + various supporting chips

« Clock generator

 8251: serial 10 (RS232)

« 8253: timer/counter

» 8255: PPI (programmable peripheral interface)
« 8257: DMA controller

« 8259: interrupt controller

* 80186/80188: 8086/8088 + supporting functions

e Compatible instruction set (+ 9 new instructions)

P

8086 Processor Model: BIU+EU

* BIU

e Memory & IO address generation
o Read/Write Instructions/Data from/to Data Bus
o EU
e Receive codes and data from BIU
» Not connected to system buses
e Execute instructions

e Save results in registers, or pass to BIU to memory and
10

RST

. /—Aﬁ
INTR INTA 55 65 7.5 TRAP SID S0D
Interrupt Gontrol Serial /0 Control

@ 8-Bit Internal Data Bus @

i | i 7
Accumulator Temporary Register Flag (5) Instruction
(8) (8) Flip Flops Register (8)
AREG ¥ iL A
: B REG (8) C REG (8)
Arithmetic | | mgégﬁ};?“ — °
Logic Unit And D REG (8) E REG (8)
ALU(S) Machine
H REG (8) L REG (8
O;r:l;a ©) ® Register
Encoding Stack Pointer (16) Array
Povier W5 Program Counter (16)
Supply | —m GND Incrementer/Decrementer
Address Latch (16) g
|
Power Down Timing And Control L i ‘
Xy O—m CLK Data/Add
X, O—»| GEN Control Status DMA Reset Address Buffer (8) aBiﬁer t_rse}ss
CLK READY RD WR ALE SO S1 10/M HOLD HLDA RESET IN RESET OUT Ays - Ag AD, - AD,

ouT Address Bus Address/Data Bus

P———

Processor Mode

P

Fetch and Execution Cycle

* BIU+EU allows the fetch and execution cycle to

overlap =
e 0. System boot, Instruction Queue is emy—]
e 1. IP =>BIU=> address bus

e 2. Mem|[(IP++)] => Instruction Queue|tail++]

O' 3a. InstrQ[head] => EU => execution \ﬁt o J
e 3b. Mem[IP++] => InstrQ|tail++]

« Maybe multiple instructions

e Repeat 3a+3b (can be overlapped)

11

Waiting Conditions
» BIU+EU: execute (almost) continuously without
waiting, except ...
* Waiting Conditions:
e External Memory Access

e Next Jump Instruction
e Long & Slow Instruction

12

P———

BIU: 8088 vs. 8086

* BIU is the major difference

* 8088:
 Register: 16-bit (same as 8086)
e Data bus: 8-bit (vs. 16-bit/8086)
e Instruction queue: 4 bytes (vs. 6-byte/8086)

* Only 30% slower than 8086, Why?

e If queue is kept full, instructions are executed without
interruption

e only slightly affected by the data bus width difference:
16 vs 8-bit

13

086/8088 Programming Model:
Processor Features vs. Model

* ALU:16-bit vs. 8-bit data register

e Some operations requires 8 bits, some 16 bits
« => Groups of 8-bit registers as 16-bit registers

« => Memory copy: two bytes from two memory banks for 16-
bit operations

* Address: 20-bit (much more memory locations)
e With 16-bit address pointers (same as 8085)

e Memory management: Segmented Memory

 Divide memory into 64KB segments (16-bit addressable
within each segment)

» 16-bit Pointers: for Segment address & Offset within segment

14

7°8086/8088 Programmin

EU Register Functions
Data Registers Segment Registers

o

16-bit registers 8-bit registers
(Register Operands)

Status and Control Flags
: Pointers &

_ Index Registers

8-bit flags x 2 (Memory Access)

15

8086 Programming Model:
Data Registers
* Data Group: (8/16-bit registers)

« 16-bit registers, byte/word accessible (16=8x2)

 Data registers: Save temporary results as long as possible
- For Efficiency: avoid costly (slow) external memory access

e AX (= AH+AL): 16-bit Accumulator (Acc.)

o AL = Accumulator for 8-bit operations

« Acc: default source operand & result for arithmetic/logic
operations

- E.g, ADD AX, BX ¢ AX := AX + BX.
e BX (= BH+BL): typically used as a Base register
e (X (= CH+CL): typically used as a Counter
e DX (= DH+DL): typically used as a general Data register

16

II 8086 Status ana Control Flags

* Flags: status vs. control

e Status: indication of results
« For conditional flow control: JNZ, JNC, ...

e Control: set or clear to control subsequent operations

* 8086:
e statusx 6 [C,P A, Z, S, O]
e control x 3 [TF, IF, DF]

17

8086 Status and Control Flags

Flag L : (Same as 8085 status register)

SF ZF X AF X PF | X |[CF

CF=0 : No Carry (Add) or Borrow (SUB)
CF: Carry Flag {

CF=1 : high-order bit Carry/Borrow

PF: (Even) Parity Flag (even number of 1’s in low-order 8 bits of result)
AF: Aux. Carry: Carry/Borrow on bit 3 (Low nibble of AL)

ZF: Zero Flag: (1: result is zero)

SF: Sign Flag: (O: positive, 1: negative)

18

8086 Status and Control Flags

Flag H : (TF, IF, DF: control bits, others: status)

X X X X OF DF| IF | TF

TF: Trap flag (single-step after next instruction; clear by single-step interrupt)
IF: Interrupt-Enable: enable maskable interrupts

DF: Direction flag: auto-decrement (1) or increment(0) index on
string (block move) operations

OF: Overflow: signed result cannot be expressed within #bits in destination operand

43

II 8086 Status and Control Flags

* TF: software single step
e Jump to trap address on each execution (if set)

e [F: INTR enable
e INT, ISR, INTV, IRET

* DF: block move (string) operation direction

e Auto-increment or auto-decrement

20

Icators. Bi

Flags,, Flags,
XX X |OF|DF| IF | TE|SF | 2F] X | AF| X | PF | X#|CF

Bit

Position Name Function

0 CF Carry flag: Set on high-order bit carry
or borrow; cleared otherwise

2 PF Parity flag: Set if low-order 8 bits of result contain
an even number of | bits: cleared otherwise

4 AF Set on carry from or borrow to the low-order
4 bits of AL; cleared otherwise

6 ZF Zero flag: Set if result is zero; cleared otherwise

7 SF Sign flag: Set equal to high-order bit of result
(0 is positive, 1 is negative)

8 TF Single-step flag: Once set, a single-step interrupt
occurs after the next instruction executes; TF
is cleared by the single-siep interrupt

9 IF Interrupt-enable flag: When set. maskable
interrupts will cause the CPU to transfer control
Lo an interrupl vector-specilied location

10 DF Direction flag: Causes string instructions to auto-
decrement the appropriate index register when
set; clearing DF causes auto-increment

11 OF Overflow flag: Set if the signed result cannot be
expressed within the number of bits in the
destination operand: cleared otherwise

8086 Programming I\/Iod;I:

Segment Registers

* Segment Group: divide memory into
e (S: Code Segment [64KB for each segment]
e DS: Data Segment
e ES: Extra Segment

[DS:0] = byte O
(the 1t byte)
e SS: Stack Segment in Data Segment
e Segment Registers: CS, DS, ES, SS [0 = offset to begin-of-DS
e Save Base addresses to particular segments

e SEG(16-bit):OFFSET(16-bit) is used by BIU to calculate
(20-bit) physical memory address

22

focation

C e

ES point to

0 of the current segment. In this example, the stack and extra segments are partially

overlapped. (From J. Uffenbeck, Microcomputers and Microprocessors: The 8080, 8085, and Z-

80, |

Code segment (CS)
B3FF

E

Data segment (DS)
EOO0Q

|

Stack segment (55)
5D27

|

Extra segment (ES)
52B9

— -

FFFFE
EFFFF
Data
segment
EQ000
C3FEF
Caode
segment
B3FF0O
S -1 6D26F
e
e //:' _-'/:if,r Stack
: L
% f‘/{f ,’/;

D270
segment

62B8F
segment }Exlra
52B90

-_——".---"--_r.'ll
-_——-'r.-_--"--_-‘"
a0
SAFFF [
Extra
490001 ES
2BFFF |
44000 I
£3FFF
Slack
40001 85
KIFFF
K]
2FFFF
Coda
20000 | <5
1FFFF
Cala
10000 e N [

3
3

:

-4 A memory system showing the placement of four

segments.

— think of segments as
windows that can be
moved over any area
of memory to access
data or code

— a program can have
more than four or six
segments,

 but only access four or
SIX segments at a time

24

imaginary sida
wirw daiading
sl gvarlap

FFFFF

D F

DAZTF

ADFD
(MOEF

Cri
=15

5 An appli
stack segment loaded into a DOS system

— a program placed in
memory by DOS is loaded
In the TPA at the first
available area of memory
above drivers and other TPA
programs

Ciata

-—{zazals=— grea Is indicated by a free-
—Cxaes pointer maintained by DOS

-~ t=i2<=_ program loading is handled

DOE and drseiii

automatically by the

program loader within DOS

25

Real mode memory

FFFFF

1FFFF

1F000

10000

00000

Offset = FO0O0

64K-byte
segment

Segment register

- 1000

— this shows a memory
segment beginning at
10000H, ending at
location 1FFFFH

e 64K bytes in length

— also shows how an
offset address, called a
displacement, of
FOOOH selects location
1FOOOH Iin the memory

26

W

8086 Programming I\/Iod;[:
Index Registers

* Pointer/Index Group: (16-bit) as memory pointers

e [P: Instruction Pointer < CS (point to CS by default)
» (next instruction to be fetched by BIU; physically part of BIU)

e SI: Source Index & DS
e DI: Destination Index < ES
e SP: Stack Pointer & SS

* Index Registers: IP, SI, DI, SP

e Save Index (or offset) or Pointer to a Base address
- E.g, MOV AH, [SI] ;AH :=(*DS:SI), // Mem. Addr. in SI

27

Segmented Memory

* Memory Organization: Linear vs. Segmented
e Linear Addressing: (MC68K, i8085)

« The entire memory is regarded as a whole

- Specify absolute addresses in instructions

« The entire memory space is available all the time

e Segmented Addressing: (ix86)

« Memory is divided into segments
- Specify an address as offset relative to segment base address

- Programs use offsets as logical address, independent of where
segments are located (relocatable)

« Process is limited to access designated segments at a given time

28

P

Segment Registers

* 8086: 1M, divided into 64K (2/16) memory
segments
e 16-bit offset/logical address (relative to segment base

address)

® 4 active segments, pointed to by

e (S (program codes), DS (data for program), ES
(extra/shared data), SS (stack or subroutine/ISR return
addresses) segment registers

* 8085: 64K x 1, for program and data
e Stack contents may overwrite data and code
e Limited program code size

29

W

8086 Programming I\/Iod;[:

Segment Registers

* Segment Group: divide memory into
e (S: Code Segment [64KB for each segment]
e DS: Data Segment
e ES: Extra Segment

[DS:0] = byte O
(the 1t byte)
e SS: Stack Segment in Data Segment
* Segment Registers: CS, DS, ES, SS [0 = offsetto begin-of-DS
e Save Base addresses to particular segments

e SEG(16-bit):OFFSET(16-bit) is used by BIU to calculate
(20-bit) physical memory address

30

Logical and Physical Addresses

® Physical Address: 20-bit

* Index/segment registers: 16-bit
e Logical address in index registers: 16-bit

e Base address in segment registers: 16-bit+0000,
« 16-byte segment boundaries
» Can define a segment at absolute addresses: 16N+o.
e Address Translation:

» Phys-address = Base*16+Index (or offset)
B dcu b B bR S

31

P

Default Segment Registers

* The default segment register depends on the
instruction being used

e MOV [BP], AL :AL := *(SS:BP)
e Next instruction <~ C5:IP
* Alternative segment:

e Default segment can be changed using segment override
operator (for some memory reference types)

32

P———

Default Segment Registers

Instruction fetch CS - IP
Stack operations SS - SP
General data DS CS,ES,SS | Effective address
String source DS CS,ES,SS | SI
String destination | ES - DI
BX used as pointer | DS CS,ES,SS | Effective address
BP used as pointer | SS CS,ES,DS | Effective address

33

Segmented Memory

e Advantages
e CS+DS1/DS2/...: different DS’s for one program
e (51=—>CS>:

« re-allocatable codes for task switching
« Run at any location (if no reference to physical address)

e Disadvantages
e Complex hardware: requires two registers (e.g., DS:SI)

e Limited segment size for a program
« 64K or, if larger, switching between 64K’s

» 386~: large segment up to 4G (flat mode, disabling segmented
memory)

34

Mis-aligned words >
(started at odd-byte address)

{
{
{

Byte 1048575

Byte 1048574

:|> Word 524287

‘ﬁ

YA

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

= Word 3

-

- Word 2

- Word 1

= Word 0

Aligned words
(started at even-byte address)

35

78086 Memory OrganiZatic
Memory Banks (1)

® 2**20 addresses can be arranged as:
e 2**20 (8-bit) bytes in continuous locations, or
e 2**19 16-bit aligned words (in parallel banks)
» Plus 2**19-1 mis-aligned words
e Not a single way, but ...
* Memory organization & interfacing should reflects

the access behavior of the processor in the most
natural way. Two types of operations:

e Byte: I/O, character data (e.g., ASCII)
e Words: large 16-bit integers arithmetic operations

36

A

86 Memory Organization: Memory
Banks (2)

e Even and Odd Memory Banks
e 16-bit data bus<> two-byte / two one-byte access

e Allows processor to work on bytes or on (16-bit) words
« 1O operations are normally conducted in bytes
« Arithmetic operations may use large 16-bit words
e Can handle odd-length instructions
» Single byte instructions
« Multiple byte (and very long) instructions

37

8086 can read two bytes from memory simultaneously. (b) If the 16-bit word begins at an odd

address, the 8086 will require two memory read or write cycles.

Even Odd
bank bank
1048574 1048575
’ ’
' i
word 4
8 9
6 7
4 5
word 0 ; ;
0 1

16-bit data word to 8086

(a)

8086
read 2

8086
read 1

Byte 7

Byte 6

Byte 5

Byte 4

|

(b)

ressed bank the

Word starting at
an odd address

Banks,

Word Addresses vs. Byte Addresses

Word address (with 2 banks) = Byte address div 2

(= discarding the least significant address bit)

e.g., bytes xxxx...zzz0 and xxxx...zzz1 belong to
word XxxX...zzz (X,z: 0’s or 1’s)

even odd

bank ‘ bank

(bytes 0, 2, 4, 6) (bytes 1, 3, 5, 7)

x ﬁDO~D7 x ﬁD8~D15

BLE (A0) BHE
8086 uses A19~AL to specify a word address, and

uses A0 (also know as BLE) and BHE to select
Individual bytes in the word, or select both (the word)

Al1~A1l19

(word address)

39

]

78086 Memory OrganiZatic

Memory Banks (3a)

* Memory Banks

e Can read 16-bit data simultaneously
« &One from odd-addressed byte, another from even-addressed
byte
» <Need TWO memory banks in parallel
e Byte Access = Word Access + Byte Enable
« Select byte(s) in accessed word
« BLE: Byte/Bank Low Enable
- Labeled as Ao in 8086
- Confusing: No Ao, A1 in later x86 CPUs
- BHE: Byte/Bank High Enable

40

e

78086 Memory OrganiZatiC

Memory Banks (3b)
* Address Decoding (difference with 8085/88)

e 8085/8088: (byte-oriented memory access)
« Ao~Ais: issue byte addresses to address individual bytes

e Ao~An-1 (low order n address bits): connected to Ao~An-1 of
memory chips with n address pins

« An~Ais (high order address bits): for chip selection (CS)

e 8086: (word-oriented memory access)

« A1~A19: issue word addresses to address words (= 2 parallel bytes)
« Ai~An: Connected to Ao~An-1 of two parallel memory banks
« An+1~Ai19: for chip selection (CS)

« Ao(BLE#) and BHE# control line:

- toselect a byte from even/odd bank for byte-based operations and
operations involving misaligned operands, or

- select both bytes for word-based operations. 41

64K x 8 _I /
Data bus \ DO-D7 Q\
/ AO0-Al15

7
Al19-Al6 Addrelonm0 / AO-A15 AD-A15
%
Processor (Byte) Address
N P S CS1#
B2 +V |
WE OE CSI
I\T{El“?{ LAl T Q
Control bus MEMEB T
- A16-A19 Decoder |, Memory Select
42

\V
MSB (aligned)

+3V

AH& 1
il < D8-DIS
atafBus . LSB “Even” “Odd”
AL ST |
U e DO-D7 DO-D7
L WOrd address
64K % 8 64K x 8
AD-A15 Al~Al6 AO-A1S
cs2 +5V cs2
WE OE CSI WE OF CSI
I T 1 I 7
Control Bus l
(BbLE#) (BIREH)
—9
Al19-Al7 Al6-Al BH/BLE

Processor (Word) Address

43

0000 H1

emory Organization: ool |1
Alignment e
. 0003 L2

e Endianess: 0004 | H3

e Single way to model multi-byte CPU register [o005 | L3

« AX <> AH+AL (high order byte in AH, low order byte 1 AL)
e Two ways to store operands in memory
* Big-endian CPU: (IBM370, M68*, Sparc)
e High-order-byte-first (HOBF)
e Maps highest-order byte of internal register<lowest (1)
memory byte address

e Operand address == address of 1st memory byte (MSB)
« MOV Ry, [N] <& N:addr. of 1%t byte in memory & MSB of register
« N, N+1, N+2, ...: addresses of all bytes, MSB at addr [N]

44

,%ory Orga n%i 5] 1 i 2

0001 |H1
Alignment o002 1L2
0003 | H2

e Little-endian CPU: (DEC, Intel) 0004 | L3
e Low-order-byte-first (LOBF) 0005 | H3

e Maps lowest-order byte of register <15t memory byte

e Operand address == address of 1t memory byte (LSB)
« MOV AX, [N] <N: addr of 1%t byte in memory & LSB of register
o AL<[N], AH&[N+1] (addr [N], +1, +2, ...: low-to-high order)

e Configurable CPU:

e Can switch between Big/Little-endian, or

e Provide instructions which convert 16-/32-bit data
between two byte ordering (80486)

45

Alinment

b-Addr | Data
0000

0001

0002 |L2
0003 | H2
0004

0005 |L4
0006 |H4
0007

0008 -
0009

000a

000b

Single memory chip

(8-bit data bus)

16-bit data bus

— | b-Addr Data w-Addr
0000 w0
0 Toooz wi
0004 w2
L [ooos 0007 . w3
0008 w4
2 o00a w5
3 Even bank Odd bank
<«— Aligned
4 _ <-----» Mis-Aligned
<+«——— Little AH AL
5 endian | gH BL
CH CL
DH DL

46

8086 Memory Organization

» Aligned operand:

e Operand aligned at even-byte (word/dword) boundaries
e Allows single access to read/write one operand

® Mis-aligned words:

e Word operand does not start at even address

» Through internal shift/swap mechanism, if necessary (e.g., load
mis-aligned MSB/LSB to AH/AL)

e Need 2 read cycles to read/write the word (8086)

« Issues two addresses to access the two even-aligned words
containing the operand in order to access the operand

- slower but transparent to programmer

47

: MSB (mis-aligned)
AH

_
D8-DIS
B LSB our
us
AL
Do-17 DO-D7 DO-D7

64K x 8 64K x B
ddess B AO-ATS A1~A16 AO-AIS
cSs2 +5V cSs2 | +5V
WE OE CSl WE OE CSI
| [1 I
Control Bus
(BLE#) (BHEA)
Al BHE
—
Al17~A19 Al19-Al17 Al6-Al BH/BLE

Processor (Word) Address 48

3086 Memory Organization

* 8088: 8-bit data bus (same as 8085)

e Always 2 cycles for word-based operations
- Aligned or not
» Slower word operations

e because of 8-bit external data bus

» Use single memory bank to store multi-byte operands (like
i8085)

49

3086 Memory Map

* Memory Map: How memory space is allocated
e ROM Area: boot, BIOS
e RAM: OS/User Apps & data
e Unused
e Reserved: for future hardware/software uses

e Dedicated: for specific system interrupt and rest
functions, etc.

50

386 Processor

Processor Model: BIU+CPU+MMU

Programming Model: GPR + SPR
(Segments vs. Paging) + PL

80286 (Review)

® First with Protection Mode
» Review of 286 Protected Mode ... Next

52

30286

* Became available in 1982

¢ used in IBM AT computer (1984)
* 16-bit data bus

e 24-bit address bus (16 MB)
e (vs. 20-bit/1iM 8086)

* clock speed 25% faster than 8088, throughput 5 times
greater than 8088

5%

P

80286: Real vs. Protected Modes

* Larger address space: 24-bit address bus
e Real Mode vs. Protected Mode

* Real Mode: (8086 Mode)

e Power on default mode

e Function like a 8086: use 20-bit least significant address
lines (1M)

e Software compatible with 8086, 186
e 16 new instructions (for Protected Mode management)

e Faster 286: redesigned processor, plus higher clock rate
(6-8MHz)

54

s P

- 80286: Real vs. Protected Modes

* Protected Mode:
e Multi-program environment
e Each program has a predetermined amount of memory

e Addressed via segment selector (physical addresses
invisible): 16M addressable

 Easy program switching

e “Protected mode”: Multiple programs loaded at the
same time (within their respective segments), protected
from read/write by each other; a program running in
another segment cannot Read/Write other segments

35

80286: Real vs. Protected Modes

* Protected Mode:

e Cannot be switch back to real mode to avoid illegal
access by switching back and forth between modes

* A faster 8086 only?
e MS-DOS requires that all programs be run in Real Mode

56

80386 Model

* Refine 286 Protect Mode
e Real & Protected Modes

* Expand to 32-bit registers
* New Virtual 8086 Mode
* Components: BIU, CPU, MMU

DL

80386DX (aka. 80386)

* available in 1985, a major redesign of 86/286

e Compatibility commitment through 2000

* 32-bit data and address buses (4 GB memory)
e Real Address Mode: 1M visible, 286 real mode

e Protected Virtual Address Mode:
« On board MMU
« Segmented tasks of 1ibyte to 4G bytes

- Segment base, limit, attributes defined by a descriptor register
- Page swapping: 4K pages, up to 641B virtual memory space
« Windows, OS/2, Unix/Linux

58

80386DX (aka. 80386)

* Virtual 8086 mode (a special Protected mode
feature): permitted multiple 8086 virtual
machines-multitasking (similar to real mode)

* Windows (multiple MSDOS’s)

* Clock rate:
e max. 40MHz, 2 pulses per R/W bus cycle

e External memory cache to avoid wait
« Fast SRAM
« 93% hit rate with 64K cache

* Compatible instructions (14 new)

03

P

80386: Real vs. Protected Modes

* Larger address space: 32-bit address bus (4G)
e Real Mode vs. Protected Mode (refined from 286)

* Real Mode: (8086 Mode)

e Power on default mode

 Function like a 8086: (1) use only 20-bit least significant
address lines (1M) (2) segmented memory retained (64K)

e Software compatible with 286

* New Real Mode Features:
e access to 32-bit register set
e two new segments: F, G

60

80386: Real vs. Protected Modes

® Protected Mode:
e new addressing mechanism
» (in contrast to that of real mode)
e supports protection levels (PLs)
e Segment size: 1 to 4G (not fixed size 64K)

e Segment register (16-bit): as POINTER to a descriptor
table
« NOT as BASE address of a segment
e 13-bit index to table, 1-bit local/global flag, 2-bit: RPL

61

80386: Real vs. Protected Modes

* Protected Mode: (cont.)

e descriptor table: (8 byte per entry)
« 32-bit base address of segment
« segment size (20-bit):
- in byte (max=1M, G flag=0) or in 4k-page (max=4G, G=1)
» access rights (and status & control information)
e memory address

« = base address (in table) + offset (in instruction)

62

80386: Real vs. Protected Modes

* Protected Mode: (cont.)

e Paging mechanism for virtual memory:

» map 32-bit linear address (base+offset) => physical address &
page frame address

« (4K page frames in system memory)
« <up to 6471B of virtual memory

e Paging mechanism can be turned off

63

Protected Mode Architecture

* In protected mode, Pentium supports
* More sophisticated segmentation
» Segmentation can be made invisible (flat model)

* Paging for virtual memory

» Paging can be turned off

00000FFFh 00000FFFh LSRR
| . 32-hit
Logical Segment 32l Page Physical
- . . , . y . ’ .'I:":I :
Address Translation Linear Translation Address
Address

MOV AL, [00000FFFh]

19498 © 5. Dandamudi Introduction: Page 32

T b wsed with 5. Dandamwdi, “Tnirodecton (o Assembly Language Programiming,” Springer-Verlag. 18

: Real Vs.
Modes

* Protected Mode: (cont.)

e Protection mechanism:
» tasks/data/instructions are assigned a privilege level (PL)

» tasks running at lower PL cannot access tasks or data
segments at a higher PL

e OS runs multiple programs that are protected from the
others

65

P

80386: Real vs. Protected Modes

* Two Ways to Run 8086 Programs:
e Real Mode
e Virtual 8086 Mode

* Virtual 8086 Mode:

 runs multiple 8086 +other 386 (protected mode)
programs independently

e each task sees 1 MB (mapped via paging to anywhere in
4GB space)

e running V8086+ Protected mode simultaneously

e 8086 tasks is assigned the lowest privilege level, cannot
access programs/data in other segments

66

386 Processor

Review 286/386 Protected Modes

Programming Model: GPR + SPR
(Segments vs. Paging) + PL

Address
generation

Memory Management

Unit (MMU)
| Segmentationunit Paging unit | (pag | ng)
i Descriptor Page E
>: registers cache TLB| |
4 L — <
Address | i |ai® Contral |
. i | access and !
generatlon - attributes | !

__ (segment)

Central Processing Bus Interface

Unit (CPU) Unit (BIU) \/
i Execution unit Instruction unit—i i Prefetch unit Bus control unitqi
i Instruction | i :
i ALU decode and i i [Prefetcher Address :
_i sequencing : >: < drivers ! Address bus A2-A31
E Register PEFOd? : E 16-byte Bus ;:>
1| file imstruction i | queue control i Control bus
i queue : | !

Data bus D0O-D31

fetching]

68

..
80386 Processor Model

32-hit data bus

32-hit data bus

32-bit linear address bus

Bus size
control

32-bit system
address | Parity control

Page
attribute

32bit g tio
Barrel : nd generatio
sf?i;trz base/ Segmer_\tatlnr Paging % |
ndex bu unit it | Address
| 32-bit drivers
Register file Descriptor | 20-bit rite dater
registers 1 hveical] Write
ALU Translation dﬂ?ess 32-bit | pyffers (4)
Limit and look-aside read dat Dot b
attribute F"LAl buffers sz Ll I
transcelvers
2-bit displacement bus Bus-control I

Microinstruction bus request

| FPrefetcher
| sequiencer

[Burst control |
I
Control and Instruction |strea Cache controll
protection unif Decoded | 4gcode 32-byte
Instructions code queue Bus _Imerface
(2 X 16 bytes Unit (BIU)

Control ROM

GWU: Prof. N. Alexandridis Caches : Introduction

rocessor
BIU+CPU+MMU

* BIU

e control 32-bit address and data buses
e keep instruction queue full (16 bytes)
e New features: address pipelining & dynamic bus sizing

70

386 Processor Model:

BIU+CPU+MMU
* Address Pipelining

e address of next memory location is output halfway
through current bus cycle

« Gives external memory more address decode time
 slower memory chip is OK
» easier to keep up with faster (2 CLK) bus cycle of 386

R/W \—R—.LW \

71

80386 Processor Model: BIU

* Dynamic Data Bus Sizing

e Switch between 16 <> 32-bit data bus on the fly
» accommodate to external 16-bit memory cards or 1O devices

e Adjust bus timing to use only the least significant 16 bits

72

80386 Processor Model: BIU

* External Memory Banks
e 4 memory banks (4x8=32bits)
e A>~A31: issues double word (32bit) addresses

e BEo-BE3 for bank selection (there is no Ao~Az1)
« access byte or word or double word
- aligned operands: 1 bus cycle
» mis-aligned (addr not at 4N, i.e., %4 !=0): 2 bus cycles

73

80386 Processor Model: BIU

* External Memory Banks

A2~A31 (double word address)

=5 5 3

bank-0 bank-1 bank-2 bank-3
(bytes 0, 4, 8) | |(bytes1,5,9)| |(bytes?2,6,a)| |(bytes3,7,b)

5 § §F @ 1

EEU popr PElpapis BE2pispry BB pospag

74

80386 Processor Model: CPU

* CPU=IU (instruction) +EU (execution)
e fetching & execution can overlap
o [U:
e retrieval instructions from queue
e Decode instruction
e store in decoded queue

e EU: ALU + registers (32-bit)

e execute decoded instructions

RS

» IVIMU Segmentatlon+Pag|ng Units

® Segmentation unit
e Real mode: generate the 20-bit physical address

e Protected mode: store base/size/rights in descriptor
registers
» cache descriptor tables in RAM
- faster switching between tasks

® Paging Unit

e determines physical addresses associated with active
segments (divided into 4K pages)

e virtual memory support to allow larger programs

76

R B

80386 Programming Model: GPR

* General Purpose Registers (GPR)
e Data & Addresses Groups
e Status & Control Flags
e Segment Group

77

80386 Programming Model: GPR

* General Purpose Registers (la)
e Data & Addresses Groups

« Data/Pointer/Index registers
 32-bit width (max)
e Data Group:
e 8-bit: AL, AH, BL, BH, CL, CH, DL, DH
« 16-bit: AX, BX, CX, DX
« 32-bit: EAX, EBX, ECX, EDX
e Accumulators:
« 8-bit: AL, 16-bit: AX, 32-bit: EAX

78

80386 Programming Model: GPR

* General Purpose Registers (Ib)
e Data & Addresses Groups

e Data/Pointer/Index registers
e 32-bit width (max)
e Pointer & Index Group:

« keep offset (logic address) relative to base address of a
segment

e 16-bit: SP, BP, SI, DI, IP=>
» :-bit: ESP, EBP, ES1, EDI EIP

79

—_—

- AX =
AH AL
: il BL Data group
FIGURE 3-12.a e = —
Programming model for DX — —
the 80386. The general- . i N
purpose registers (a) are
used by applications ESP SP
programmers. The EBP BP
special-purpose registers ESI I Pointer and index group
(b) are intended to be EDI DI
used by the operating EIP IP
system software.
EFLAGS Flags Status and control flags
15 0

CS Code segment

h Stack segment

DS]

ES

Data segments
| ES |
| Gs | =

80386 Programming Model: GPR

* General Purpose Registers (II)

e Status & Control Flags:
« EFLAGS: 32-bit, 4 new flags
VM: used to switch to V8086 mode
RF: resume from debug mode to normal execution
- (used with debugging registers)
NT: nested task (current task was called from another task)
- To determine type of return instruction

IOPL: current /O privilege level (2-bit, PL 0-3) required to
execute I/O instructions

« OS control over I/O access

81

: ave been added
compared to the 8086: VM, RF, NT, and IOPL. (Courtesy of Intel Corporation.)

Flags
f A Al
3322222222221 11111111]1
10987654321098765432109876543210
EFLAGS Reserved for Intei VIRl [NJIOP [OID[T |[T[S|Z| [A| |P]| |C
MIFIO|T| L |F|F|F|F|F|FIO|F|O|F|1|F
Virtual mode A T LA AR 4 | +—Czu‘rj,f flag
Kesume flag Parity flag
Nested task flag Auxiliary carry
I{O privilege level Zero flag
Overflow Sign flag
Direction flag Trap flag

Interrupt enable

Note: O indicates Intel reserved; Do not define.

82

' 80386 Programming Model: GPR

* General Purpose Registers (III)

e Segment Group:
« (S, SS, DS, ES + FS, GS (new, not as default segment)
» Remain 16-bit (NOT 32-bit)
» Real mode: as segment base (for 8086 mode operation)
» Protected mode: pointer to description table

- NOT as base address of segment
- base address is saved in a descriptor table

83

P

80386 Programming Model: SPR

» Special Purpose Registers (I) (3.11(b))
e For Protected Mode control & testing

e CRo (32): used to enable paging mechanism, monitor
task switching, enable co-processor emulation, select
protected mode

e CR2 (32) (page fault linear address): a reference to a
page/segment that must be loaded into memory

e CR3 (32) (page directory base): base address of the page
table

- Table: starting address of each page frame and access information
of that frame

84

80386 Programming Model: SPR

» Special Purpose Registers (II)
e System address registers x 4
e GDTR/32(+limit/16), IDTR/32(+limit/16), TR/16, LDTR/16(+16 0’s)
« Descriptor table information (more ...)
e Debug registers (32) x 6
- 'To set program break points

e Test registers (16) x 2

» To test the RAM in Translation Lookaside Buffer (TLB, for
virtual-to-physical address translation) (more ...)

85

(b)

47

CR2 Page fault linear address

3
| CRO
|
|

CR3 Page directory base

0
|
|
|

GDTR 32-bit base address plus 16-bit limit

IDTR. 32-bit base address plus 16-bit limit

[TR

Control registers

g’ 1€

System address regisl?

| LDTR

15

DRO

DRI

DR2

DR3

DR6

e p— — p— — p—)

DR7

et ——]

Debug registers

Test registers

86

80386 Programming Model: Segments

°* Memory Management

e Segment descriptors

« Function: keep base address, size, access rights
3 types of tables: global (GDT), local (LDT), interrupt (IDT)
GDT: pointing to segments that may be accessible to all tasks

LDT: pointing to segments associated with a given task
- Each task may have one LDT

[DT: point to the starting addresses of interrupt service routines
- Max. 256 ISR’s (processor faults, hardware/software INT’s)

87

80386 Programming Model: Segments

* Memory Management (cont.)

e Segment addressing:

e Segment Register = Index + 1-bit Global/Local Flag + RPL
(requesting privilege level)

» Index => point to a descriptor table
o Address = base (in table) + offset (from instruction)

e 13-bit index: 8K descriptors
« (8K GDT+8K LDT)x4G = 64T virtual space
» =(13+1+32)= 46-bit virtual address (1: GDT/LDT)

e Base+limit is stored in GDTR/LDTR

« LDTR:16-bit register, padded with 16 0’s (i.e, 64K descriptor

table boundaries) to form a 32-bit base address to LDT
88

| GDTR or LDTR f——

Table limit

Descriptor table

One descriptor

8k entries
64KB —

One descriptor

System memory

32-bit base
address of
segment [

Access rights
limits and base
address

| GDTR or LDTR |—|—

f

8 bytes

'

Table base

Segment register

_|

13-bitindex | |RPL|

15

3 0
L . 0 Giobal descriptor

<— One segment—up to 4 GB —

r
—l 32-bit offset from instruction ll

1 Local descriptor

89

Protected Mode Architecture (cont’d)

* Segment descriptor provides attributes of a

5C g mcen t ““‘l‘ﬁillillllluln-nnn!ri!_i‘ﬂm"
» 32-bit basc address ' i _, “i~~
- - ISR A l
» 20-bit segment size (bytes/pages) ““ itable direction)
» Control and status information
3 222221 I T T O
| 4321009 654321
1 A 1>
BASE 31:24 Ca| g [0 LIMIT PP S| TYPLH BASLE 23:16 4+
116
Bl |1 I.
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 +0
31 6 15 {}
19498 © 8. Dandamudi Introduction: Page 36

Ty b wsed with 5. Dandamudi, “Introdection @0 Assembly Language Programmang,” Springer-Verlag, 9,

Protected |

B'rt?|Bi!B|Bi15|Bi!4|B'rt3IBi12|BiH|Bit0
Segment Base Address B24-B31 Byte 7
G D l o AVL Segrment Size Limit L16-L19 Byte 6
DPL s E | oo | Aw | & Byte 5
Segment Base Address B16-B23 Byte 4
Segment Base Address B8-B15 Byte 3
Segrment Base Address BO-B7 Byte 2
Segment Size Limit LB-~L15 Byte 1
Segment Size Limit LO-L7 Byte O

Noles:

Segrment Base Address 32-bit physical starling address of the segment.

Segment Size Limit Thesegment is specified in bytes with a 1 MB maximum (G = 0)
or 4 KB pages with a 4 GB maximum (G = 1).

P (present bit) Thessgment is presant in main memorny when this bit is set. If
P = 0 the operating system must bring the segrment into memary
fromithe hard disk.

DPL (descriptor privilege kevel) The privilege level can vary from 00 (most privileged) to 11 (least
privileged).

S (s=gment descriptor) It S = Othe segment is a system descriptor. If S = 1 the segment
is a code or datasegment.

E (executable) Thesegment is executable (E = 1) ordata(E = 0).

G/ED (conforming/executable direction) ItE =1

Then if G/ED = 1code segment can be executed only when
CPL = DPL otherwise these bits are ignored.

fE =0
Then if C/ED = 1expand up the segment otherwise f C/ED =
Qexpand down the segment.

AW (readhwrite) Acoess is read-only (RW = 0) or readiwrite (RW = 1)

A (accessed) If the segment has been accessed A = 1. This bit allows the oper-
ating system to decide if a segment needs to be saved or can be
ovenwritten (trashed).

G (granularity) This bit sels the size of the segment (see Segment Size Limit).

D (defaul operation size) When D = 0.16-bit addressing and CPU registers are assurmed.
When D = 1 32-bit addressing and CPU registers are assumed.

AVL This bit is available to the operating system.

s attributes.

beginning at address 20000000H.

al Descriptor Table (LDT)
(8192 potential 8-byte desgri

-~

r) .

20

47

79

Fois e

F=—

Qo
a0

00

FF

FF

~—— Descrip

| 0017 |-

CS Register

.......

System Memeory
4 GB

512 KB
Code Segment

GDT
64 KB

LDT
64 KB

D ap

2007FFFF

20000000

00050000 --—

L -' - WO in this
pabte. The elght bytes that make up thls descrlptor specn‘y a 512 KB memory segment

80386 Programming Model: Paging

* Memory Management (cont.)
e Paging: (CRo bit3i=enable paging)
13-bit index + Global/Local flag = 8K x 2 descriptors
Each descriptor point to 4G (2**32)
Addressing space for a task: 16K x 4 G = 64T

Need a paging mechanism to support virtual memory if less
than 64T physical memory (only 4G for 386)

e A page translation mechanism is added when paging is
enabled (Fig. 3.14)

« To Compute physical address within a 4 K page frame & the
address of the page frame

e via. Page Directory & Page Table

93

80386 Programming Model: Paging

* Memory Management (cont.)
e Page Fault: requested page is not in real memory
e Page Swapping:
» Swap out unused and swap in requested pages
» normally by LRU (Least Recently Used) strategy

e TLB (Translation Lookaside Buffer):

« Contains the addresses of the 32 most recently accessed page
frames (coverage: 4K x 32 = 128K bytes)

- For fast page look-up
» For reducing page miss: 98% page hit (in TLB)

94

Protected Mode Architecture

* In protected mode, Pentium supports
* More sophisticated segmentation

» Segmentation can be made invisible (flat model)
* Paging for virtual memory

» Paging can be turned off
ee - Dir(10)+Pag(10)+Offset(12) < 4k

repageable pages < [VM image]

. 1 hi 32-hit
Logical Segment 32 Page)
Addres: Translation Translation Physica
Address (. g

Linear Address
Address
19498 © 5. Dandamudi Introduction: Page 32

T b wsed with 5. Dandamwdi, “Tnirodecton (o Assembly Language Programiming,” Springer-Verlag. 18

s P

emory Paging

* The memory paging mechanism allows any physical
memory location to be assigned to any linear address.

e Linear address: the address generated by a program.

e Physical address: the actual memory location accessed by a
program.

* With memory paging, the linear address is invisibly
translated to any physical address.

e Data are not stored where the program think of

96

Memaory pages
/o /o 12 Rﬂ__‘

Dir Page Offset

4K Pages.
4. V4
] Page tables \'\ v M :"""Qe
g 1024 page ‘E,
Page directory takles per dir |
AM
Phys T — N
Mem.
CR3 T
Base 1-(,1_:}.. 1
32-bit addrs

97

Figure 2—11 The control register structure of the microprocessor.

® L =
M| |P|D|T|P[V
c| |S|E|S|VIM
El |[E| |D|I|E
X 41 unit PlP
Page directory base address Cw
+ 0 ba Y D
Page fault linear address
Reserved
P|CIN Al W E|[T|E|M|P
G|D\W M| |P TIS|M[P|E
= <

CR4 Pentium, Pentium Pro,
Pentium Il, Pentium III,
Pentium 4 and CoreZ2.

CR3

CR2

CR1

CRO

98

Figure 2—12 The format for the |

=

| 0

0y =

o

= pmem—t———

LTI &N k d i ﬂ
Directory Page table Offset
(a)
5 20 > 6543210
plalrlplulwlp
Address Clw
p|T
.
R
—————
L 8
(b) -

==

7net:;1r address (a) and a’pﬁge directory or page table entry (b).

Prasent

Writable

User defined
Write-through

Cache disable

Accessed

Dirty (0 in page directory)

99

aging IS

I

ce DFETTorv and Page Transiation tahtes—

10 bits

A31

— -

Select one of

1024 4MB
physical
Memory

blocks.

A22

Page Directory Table

| .3
—» 32 bits --—

CR3

-

8 3

Liner Address (32 bits)

— 10 bits —

12 bits

A2l Al2 All

Page Translation Table

Select one byte

A0

—— Each 4-byte entry stores
the 4K base address of

a physical block of memory.

4KB

Each 4-byte entry stores
the 4K base address of
the corresponding

Page Translation Table.

(One of 1024) s —
physical
o memory page.
>) .
Select on of ¢ S e :
1024 4KB .
“physical f—
memory el | €T T
blocks. —* 32 bits 4:—| —» 8 bits —-—

59,

One million 4KB

blocks = 4GB.

:!.}
15
]
o
v
e
Q
E
L
=
=
=
w
S
=
(=W
%'}:'

100

CHJ|1000 aoo UGIIEIIII 111

iillo

3FF
3FE

3D

D03

Page Directory Table

FFCOMNNK - FFFFFFFF

FFS00000 - FFBFFFFF

FF400000 - FETFFFFF

FEMOMN) - FE3FFFFF

OO0 - DOFFFFFF

DD - DB FFFFF

OO0 - DOTFFFFR

Rt Achlress

Register CR3

(FF— 3 | 00800000 - 00803FFF

Page Transkation Table (Mo, 2)

IFF | DOBFFO00 - MOBFFFFE

IFE | DOBFEOO0 - (OBFEFFF

JFD | COBETMD - OBFTHEFF
FFE

AFC | 00BFON - MOBFCFFF

& MO - (DR FFF

2 DISO000 - ORNZFFF

1 MM (0K = ORI FFF

o MMM = (OROGFFF

Page Transkation Table (Mo,

IFF | COTFFOO0 - 0OTFFFFF

3FE | DO7FEM - (OTFEFFF

IFD | GOTFDA00 - OTFDFFE

SFC | DOTRCO00 - 00TFCFFE

4 [O0404400 - 00S04FFF

3 DO = OL03FFF

2| DO - DOA02FFF

1| Odbh OO0 - D040 FFF

0| D000 - DOL00FTFF

Page Transkation Table (No. 0)

AFF | O3FFO00 - D03FFFFF

AL

4GB Physical
Memory Space

FFFFFFFF

ADOOEEE

ADDNFTE

AOONOFFTY

ADNFFC

ADDODONS

AN

ADOONO00

LLELELLEA

- 4K B page e ————

80386 Programming Model: PL

* Protection:

e assign PL (Privilege Level) to resources to prevent lower
privilege tasks from accessing high privilege resources

e PL 0~3, o: highest privilege

e task: CPL

e [nstruction/segment register: RPL
e data segment: DPL

e Rule: EPL > DPL => general protection fault
» where EPL=max(RPL,CPL)

102

P

80386 Programming Model: PL

* Protection (cont.): Gates

e Special descriptors that allows access to higher PL tasks
from lower PL tasks

» By accessing lower PL gates, which can access higher PL resources:
EPL <= DPL(gate)

° Types
e Call gates: provide access to high PL codes
 Task gates: for task switching
e Interrupt gates: to specify ISR’s
e Trap gates: to specify trap (error) handling routines

103

80486 Model ...

* Factors that make it faster than 386
* Operation of Direct mapped cache

® 486 cache diagrams
e Cache RAM, Tag RAM, LRU SRAM
e Data & control registers within FPU

104

;‘i?

380486DX

* 1989: a polished 386, 6 new OS level instructions
* virtually identical to 386 in terms of compatibility
* RISC design concepts

e fewer clock cycles per operation, a single clock cycle for
most frequently used instructions

e Max s0MHz
* 5 stage execution pipeline

 Portions of 5 instructions execute at once

105

380486DX

* Highly Integrated:
e On board 8K memory cache

e FPP (equivalent to external 80387 co-processor)

* Twice as fast as 386 at any given clock rate
e 20Mhz 486 ~= 40Mhz 386

106

804865X

* 804865X

e NOT a 16-bit version for transition purpose
® NO COProcessor

e No internal cache

e For low-end applications

e Max. 33Mhz only

107

P

80486DX2/DX4: Overdrive Chips

* Processor speed increased too fast
e Redesign of microcomputer for compatibility becomes

harder

e Solution: Separating internal speed with external speed,
improve performance independently

* 80486DX2/DX4 - internal clock twice/three times (NOT
four times) the external clock: runs faster internally

108

Chips

» System board design is independent of processor
upgrade (less expensive components are allowed)

* Processor operate at maximum speed data rate
internally

e Only slow access to external data operates at system board
rate

 Internal cache offset the speed gap
* 486DX2 66: 66 internal, 33 external
* 486DX4 100: 100 internal, 33 external (3x)

* Overdrive sockets: for upgrading 486dx/sx to
486dx2/dx4 (with overdrive socket pin-outs)

109

486 Processor Features

* 386 features:
e Real/Protected Modes
e Memory Management
e PL’s
e registers & bus sizes
* New features
e 6 OS instructions
e 8K/16K onboard cache (was external before 386)

e FPU (was external)
110

486 Processor Features

* A Better 386
e 5 stage instruction pipeline
e [F/ID/EX => PF/D1/D2/EX/WB
PF: pre-fetch instructions => Q (2*16-bytes)

D1: determine opcode

D2: determine memory address of operands
EX: execute indicated OP
WB: update internal register

111

486 Processor Features

* Reduced Instruction Cycle Times

* 5 stage instruction pipeline (e.g., Fig. 3.18)
e instruction cycle times:

« 8086: 4 CLK

» 80386: 2 CLK

« 80486:1 CLK (<>close to RISC)

 about 2X faster than 386

112

486 Processor Model: 386+FPU+Cache

=

* 386 units retained: BIU, CPU, MMU

* new: FPU(86387) + Cache (8K/16K)
e FPU:
e 387 onboard

0.8 u => #transistors increased (275K => 1+ millions)
» simplified system board design
 speedup FP operations

113

p=EPT]), and the memory management unit (MW):

or-the 80386 MICIOPTE

Memory Management

Unit (MMU)
i Segmentation unit Paging unit E
E Descriptor Page E
>7 registers ® cache TLB :<:
B o :
{ | Limits Control :
i | and i :
i | access e :
i | rights attributes | !
Central Processing Bus Interface
Unit (CPU) Unit (BIU) \/
i Execution unit Instruction unit:: i Prefetch unit Bus control unitﬂi
i Instruction | 1 i :
] ALU decode and E 1 |Prefetcher Address :
L sequencing | | :> <: drivers |} Address bus A2-A31
N [i .
t | Register g:f:i:f;jon]) | 16-byte Bus ::>
v | file | 1| queue control | 1 Control bus
i queue L | !

Data bus D0O-D31

p
| Address

generation
__ (segment)

Central Processing

[execution

Memory Management

Unit (MMU)

Segmentation unit

Descriptor
registers

Limits

Unit (CPU)

E Execution unit Instruction unit

i Instruction

H ALU decode and

1 -
S sequencing

1

H 3 Decoded

' Register I .

1 : instruction

1| file

i y

1

1

1

Paging

unit

Page

@ cache

TLB

Contr
and

attributes

ol

decode

Bus Interface
Unit (BIU)

Prefetcher

Address
generation

(paging)

<

16-byte
queue

Address
drivers

Bus

control

Bus control unit

Data bus DO-D31

fetching]

115

Memory Management

Unit (MMU) Cache Unit
e el T = e . -
i Segmentation unit Paging unit | i i
i i | i
: Descriptor Page ! E !
vt registers <_—I\ cache | : i
1 P | -
E Limits Control : :
Pl and | | |
! '“fw” attributes | | i
H rights i i
i 1]
1 1 I
Central Processing Bus Interface
Unit (CPU) Unit (BIU)
__________________________________ N A A ... - S
iExecntion unit Instruction unit E i Prefetch unit Bus control unit E
H Instruction : ! :
' ALU R . + | Prefetcher Address
i sequencing i __|I> ' < : drivers | 1 Address bus A2-A31
- (S-stage pipeline)| | E i
1 : i i
i | Register Decoded H : 32-byte Bus ' Control bus
E file - instruction : ' queue control i
| queue ! i :
[} i)]
I ———— e 4 L e v Data bus DO-D31
Floating-Point
Unit (FPL)
M e 0 L I
E Control
[}

file

Register <-—

An internal unified cache (Intel 486)

32-hit data bus
32-hit data bus

32-hit linear address bus

Page
attribute

32-bit system

Bus size
control

address | Parity control

32-bit q tio
Barrel : , nd generatio
shifter base/ Segmer:ntatlnr Paging unit % e I
ndex bu unit unit _bi -
| . 32-bit drivers
Register file Descriptor | 20-bit wwrite daté
registers ‘ hysical 8K-byte 39.bi Write
ALU Translation {44-ccc unified it puffers (4)
Limit and look-aside cache read dat ot b
attribute F"LA! buffers ata bus I
transcelvers
o , 2-bit displacement bus Bus-control I
Microinstruction bus | request
| Prefetcher
- __sequencer
[Burst control |
I
- C?ntl;gl and Cecoded Instruction ot Cache controll
protection unif Decode dmrile -byte
instructions code queue Bus _Imerface
(2 x 16 bytes Unit (BIU)
FP register filf Control ROM
GWU: Prof N. Alexandridis Caches : Introduction

486 Processor Model: Cache

* Cache (8K/16K (dx4))

e Function: bridge processor memory bandwidth
8088: 4.77MHz

80486: 50MHz

Pentium: 100MHz

Pentium Pro: 133 MHz

» < Main Memory (DRAM): relatively slow

e Fast Static RAMs (SRAM) as cache

 Processor <> Fast Cache (lines) < Slow Main Memory (blocks)

« A running block of main memory is copied to cache line when
needed and not in cache

» Cache miss: An unused cache line is updated and trashed if all cache
lines are being used while trying to copy

118

P

486 Processor Model: Cache

* Organization:
e Size: 8K =2Kx 4
e Mapping: 4-way set associative
4 direct mapped caches wired in parallel
» each block maps to a set of 4 cache lines

e Unified: data & code in the same cache

e Write-through update policy: update cache and memory
page on write operations

119

P———

486 Processor Model: Cache

* Locality: Why caches help?
e spatial locality: e.g., array of data
e temporal: e.g., loops in codes

* Operations on cache hit/miss
e Hit: memory copy is found in cache, use cached copy

e Miss: memory copy not found in cache
« Load memory copy to one of allowed free/unused cache blocks
« If none is free, replace a less recently used (update replaced block)

» Size of cache line: 128-bit (16-byte) cache lines
e 32-bit x N to catch locality (N=4)
 128-bit = 16-byte = 4 x 32-bit double-words

120

486 Processor Model: Cache

* Mapping:
e Memory => Cache: many-to-many

« Need to remember where the cached data came from
- To decide if a memory copy is in cache
- To update cache copy to right memory block (when replaced)

e Cache = Data RAM + Tag RAM

« Data RAM: save memory data
« Tag RAM: save memory address & access status information

121

Address to cache and main memory

(Fig. 5.8a)

Address bus

//ﬁ - Byte within “word”

— “Word” within line
> Block Number

Main memory: 2**"*® pytes

Tag RAM Data RAM Block 0
y—" — ab
Block 1
Status bits | Tag 0 Block 0 Blzzk > / I
Status bits | Tag 1 Block 1 i
\ | o
|
- d
Status bits |Tag C-1 Block C-1 3
Block M-1 kZb
Cache Block frame size = 2 W*B bytes ock - '2

P————

486 Processor Model: Cache

* main memory size = 2**(X+W+B) bytes
e main memory divided into blocks of size 2**(W+B)
bytes
e main memory address: X+W+B bits

e X (the “block number”) is treated differently depending
on the cache organization

e E.g., 16-byte as a block (& a cache line)
o B=2 [32-bit-word=4-byte=2**2]
o W=2 [16-byte=2**4=2"*2x2**2=2**2 x 32-bit-word]

» X=32-4=28 [2*28 blocks, each having 16 bytes]

123

Block diagram of a cache

(Fig. 5.8b)

Address bus

Address
7
 Wp
Selecting within
CaChe a cache block
Tag RAM
ﬁh ;ﬁg@ ~ cDagt!'tae <::>
1 (sram) {SRRTM} Main
u memo
Ss rv u Tag — (DRArg
Comparator comparing
for a hit/miss decision

Cache controller

Data Bus \/
Memory
< >\/ bus

GWU: Prof. N. Alexandridis Caches: Organization

486 Processor Model: Cache

* 3 methods of mapping
e Fully associative: map any memory block to any cache
line
e Direct map: map each memory block to specific cache
line
e Set associative (M-way): map each memory block to a
set of M cache lines

1285

Fully associative cache

0__ Address

2" = 8 bytes/block

Address:
Block
Memow no. Tag W

B
0 0000 (00-11) (0-1)

0001 (00-11) (0-1)
0010 (00-11) (0-1)
0011 (00-11) (0-1)

Tag w
4 00000 ey bbbl il
Tag RAM (4 bits) Data RAM (8 bytes)
Compare |== ? |Block Frame 0
Compare <+
Compare |3 7 1 |Block Frame 2
Compare |[==
Compare | 14 1
Compare |
Compare
ERTpE Block Frame 7
i Data
Vali
Tag Hit - Cache Hit -~
Cache

Data-select
logic

From/To CPU

t

L= e T =2 4 TE TR I

S g @)

Memory size: X=4 W=2 B=1

M=2*+*W \words=64 words = 128 bytes

Updating
data (from memory)

Fully associative cache mapping: any block from main memory can be put anywhere in the cache;
number of sets S = 1, therefore, no “set field” is required;

Caches: Organization

Cache: Fully Associative Cache

» Fully associative: memory block to any cache line (B

BN FIE 5E

LR 7, K E

5 £ff)

e Flexible to save memory blocks into cache lines
« Small trashing rate

e #tag_bits is

largest

» Since all X bits for block numbers are used as tags

e #comparators=#cache_lines
» parallel comparison with all cache lines
« largest number of comparators

127

Direct mapped cache

?
——~
6 32 1 0 Address oW = 8 pytes/block Tag Ipdex
Ta‘_g Index W B 3
BI
J ¢oe Within the block frame : Memory PP ¥ . &
f i
| 4 Tag RAM (1 bit) Data RAM (8 bytes) 0] 0000(00-11) (0-1)
. 3 ’ 1 | 0001 (00-11) (0-1)
“]) h-ol Block Frame 0 2 | 0010 (00-11) (0-1)
0011 (00-11) (0-1)
LEPY i
219 alg 5 Page” 0
6
3
/ 7
P4 8 | Joma
w ¥ 9 | 'oe)
10| ¥ 0o
6 11 ‘Page” 1
- 12
7 _ine 7 13
Valid Data Dot 14
elects| 15) L1 (Q0-11) (01
Compare "L Data-select X=4 W=2 B=1

Hit

Cache Hit 1’

logic

From/To CPU

Memory size:
M=2**W \words=64 words = 128 bytes

Updating
data (from memory)

P————

Cache: Direct Mapped Cache
¢ Direct map: memory block to specific cache line (3§
BAFEH HKERS)
e Easily mapped to: block_num %
number_of_cache_lines
e #tag_bits: smallest
» since index to cache line need not be saved as tags

e #comparators=1 (the cache-index-selected one)

e Trashing: repeatedly access memory that maps to the
same cache; repeatedly swapped in/out; increase access
time

129

A

2-way set associative cache

?? 080 ??

6 5 4 3 2 1 0 Address 2?01 oW = 8 bytes/block Tag get

?2?
Tag 7/ Set W B 3 727 Io

Memory Block

fWithin the block frame

W B
00 00 (00-11) (0-1)
00 04 (00-11) (0-1)
0 10 (00-11) (0-1)

Tag RAM (1 bj Data RAM (8 bytg£)

Block Frdme 0/ <. ;3 2

p 4 11 (00-11) (0-1)
- 4
. L\ Page” 0
. — Block Erdme Z}Sen : o) Pag
-qg’ d 7 “Page” 1
0 -V 8
@
[71 9
1 “Page” 2
200 1

12 1Y 0 oo
13 *LL“Page” 3
14

1
1410041 @)

*? lll Block Frame 7

et
Data-select . X=4 W=2 B=1
Tag Hit Cache Hit .|> logic Memory size:
M=2 X*W words=64 words = 128 bytes
Cache
Updating
From/To CPU data (from memory)

GWU: Prof. N. Alexandridis Caches: Organization

ache: M-way Set Associative

* Set associative: memory block to a set of M cache
lines (A compromise between fully associative and
direct mapped organizations) (38 EME{ {5333
Z)

e #sets = #cache_lines/M (-way)

+ e.g., 2-way into 8 lines => 4 sets (addressed by 2-bit set index)

e #tag bits: medium (X - set index bits)
« Set index need not be saved as tags
- A set index => M Cache indexes (e.g., M= lines_per_set = 2)
e #comparators = M

- Parallel comparison with set-index-selected M lines

e Trashing_rate: medium
134

% rocessor :§!o$ -

4-way Set Associative Cache

* Replacement policy (LRU)

e 4 valid bits: all 4 lines in use ?
« NO => use any unused line (& save tag bits)
« YES => find one to replace

e LRU bits: which is least recently used
e Bo, Bi, B2=>Lo~ 13
» Bo=0 => Lo/L, if Bi=o => Lo, else L1
« Bo=1=>12/L3, if B2=0 => L2, else L3

e Burst mode to fill cache line: 4 bytes per cycle (Chapter
7)

132

. Pseudo LRU (least recently usen) algorithmi§

Lo | VO goo 7 fLOBI=1
L2 V2 . _
} Bo=o<: if L2,B2=1
-3 b else, B2=0
S v
-
Most recent access to:
Cache line replacement
(All 4 lines in the set valid? N2
LOor L1 1 Yes Replace invalid line
or east
recently used SR 0= No |

L2 or L3 least
/B/l,v\e;fntly used
Yes 2 = No

! Vo o v
Replace , Replace Replace Replace
line LO lineL1 line L2 line L3

GWU: Prof. N. Alexandridis Caches: Organization

Pentium Review ...

* Block diagram: BIU, CPU, FPU, MMU, cache
* U, v pipelines

134

Pentium: Superscaler Processor

* available in 1992
* 32-bit architecture

* Superscaler architecture

e Scaling: scaling down etchable feature size to increase
complexity of IC (e.g., DRAM)
10 microns/4004 to 0.13 microns (2001)

e Superscaler: go beyond simply scaling down

e Two instruction pipelines: each with own ALU, address
generation circuitry, data cache interface

e Execute two different instructions simultaneously

135

Pentium: Superscaler Processor

® Onboard cache

e Separate 8K data and code caches to avoid access
conflicts

e FPP
* Instruction pipeline: 8 stage

* Optimized floating point functions
 5x-10x FLOP’s of 486
 2x performance of 486 at any clock rate

136

Pentium: Superscaler Processor

* Compatibility with 386/486:
e Internal 32-bit registers and address bus

e Data bus expanded to 64-bits for higher data transfer
rate

» Compare 8088 to 386sx transition

137

* non-clone competition from AMD, Cyrix

* development of brand identity by Intel

138

Pentium Model ...

* Block diagram: (3.23)

 Bus interface: 64-bit data bus (was 32)
 Burst mode of transfer for fast cache fill
« BTB: pre-fetch for jumped instructions

e CPU, MMU

e FPU: 8-stage pipeline

e Cache units:
32 bytes (was 16)
« 8K data + 8K code
» 2-way (not 4-way) set associative
 Higher hit rate (32-byte lines)
 Higher trashing (2-way, not 4-way)

139

Pentium Model ...

* Operations of u & v pipelines
e u:all instructions
e v: simple integer instructions
e Pre-fetcher sort the incoming instructions
e 2 simple instructions per clock cycle (in parallel)

* Versions of processors

140

Pentium Pro Model ...

* Processing cycles against sequential fetch+execution
processors

* Block diagram:
e BIU, CPU, MMU, FPU, cache, APIC

* Comparison in performance

141

Pentium Pro: Two Chips in One

* Became available in 1995
* Superscaler of degree 3

e Can execute 3 instructions simultaneously
» Optimized for 32-bit operating systems (e.g.,
Windows NT, OS2/Warp)

* Two separate silicon die on the same package
e Processor: 0.35 u, 5.5 million transistors

e 256KB(/512K) Level 2 cache included on chip, 15.5
million transistors in smaller area

142

* On Board Level 2 cache

e Simplifies system board design
e Requires less space

e Gains faster communication with processor
* Internal (level 1) cache: 8K
® Pentium Pro 133 ~= 2x Pentium 66 ~= 4x 486DX2 66

143

/

Pentium Pro:Dynamic Execution

* Dynamic execution: reduce idle processor time by
predicting instruction behaviors

e Multiple Branch Prediction: look as far as 30
instructions ahead to anticipate program branches

e Data Flow Analysis: looks at upcoming instructions and
determine if they are available for processing, depending
on other instructions. Determine optimal execution
sequences.

e Speculative Execution: execute instructions in different
order as entered. Speculative results are stored until
final states can be determined.

144

Overview of The 68000

* The 68000 has 17 general-purpose register, each 32 bits long, plus a 32-bit
program counter and a 16-bit status register. Eight of the general-purpose
registers are used as data registers for byte, word, and long-word operations.
The other nine general-purpose registers are address registers, which can
function as stack pointers and base address registers. All 17 general-purpose
registers can serve as index registers.

* The software capabilities of the 68000 are impressive by any standard, and
reflect the fact that this microprocessor has been designed by programmers,
for programmers.

* The 68000 can operate on five different types of data - bits,4-bit binary-coded-
decimal (BCD) digits, 8-bit bytes, 16 bit words, and 32-bit long words. Byte
data may be addressed on even- or odd- address boundaries, whereas word and
long-word data must only be addressed on even-address boundaries.

Instruction set

* The 68000 is actually a 32-bit architecture internally, but 16-bit externally. It has 24-bit
addressing and a linear address space, with none of the evil segment registers of Intel's
contemporary processors that make programming them unpleasant. That means that a
single directly accessed array or structure can be larger than 64KB in size. Addresses are
computed as 32 bit, but the top 8 bits are cut to fit the address bus into a 64-pin package
(address and data share a bus in the 40 pin packages of the and Zilog Z800).

* The 68000 has an orthogonal instruction set and sixteen registers, split into data and
address registers. One address register is reserved for the Stack Pointer. Both types of
registers can be used for any function except direct addressing. Only address registers can
be used as the source of an address, but data registers can provide the offset from an
address.

More Overview

There are two operating modes in the 68000: User and Supervisor. Certain instructions in supervisor
mode are not available in user mode. The supervisor mode is a protection against operator misuse, in
sophisticated, multitasking systems. It should be interesting to see what Atari does with the
supervisor mode.

Other niceties include built-in debugging aids, traps against illegal addressing and illegal
instructions, a one-step trace mode, and seven levels of vectored interrupts. Most of these are only
available from the supervisory mode.

Although the 68000 has a 16-bit data bus, meaning that 2 bytes of information can be accessed in one
machine cycle, internally it can operate on five different types of data: bits, 4-bit binary coded
decimal (BCD), 8-bit bytes (B), 16-bit words (W), and 32-bit long words (L). Because of this, byte data
may be addressed at even or odd addresses, but words and long words must be addressed at even
addresses. For example, three bytes in a row could fall at addresses $0004, $0005 and $0006, three
words at $0004, $0006, $0008, and three long words at $0004, $0008, $000C.

((The 68000 has 56 instructions and 14 addressing modes. This is very similar to the 6502. But there
are 17 general-purpose 32-bit registers. Eight are considered data registers, seven are address registers,
one is the stack pointer and the last is the program counter.

Registers and Status Registers

All of the data registers are general purpose and can be used as index registers or counters. They
can handle bytes, words, and long words. The address registers are primarily designed to hold
addresses, but can be used as index registers. Unlike the data registers, they cannot handle 8-bit
bytes.

The stack pointer can also be used as a general purpose address register. It is actually two
registers and will contain different data depending upon whether you are in supervisor or user
operating mode.

The last 32-bit register is the program counter and, although it is a 32-bit register, only 23 of
the bits are used. Since instructions consist of words instead of bytes, the counter can access a
range of 8M words, or 16,777,216 bytes.

The last register in the 68000 is the 16-bit status register, which is divided into two 8-bit bytes.
The lower 8 bits are for the user mode and the upper 8 for the supervisor. Not all available bits
are used. The user flag bits are:

» The last register in the 68000 is the 16-bit status register, which is divided
into two 8-bit bytes. The lower 8 bits are for the user mode and the upper
8 for the supervisor. Not all available bits are used. The user flag bits are:

» BIT SYMBOL CONDITION

0 C Carry
1 \% Overflow
2 Z Zero
3 N Negative
4 X Extend
5-7 (Unused)
) Supervisor status flag bits 8 through g are used in various

combinations to signal interrupt priority for the seven levels of interrupt.
The 13th bit switches the modes between supervisor and user, and the
15th bit places the 68000 in trace mode. Bits 11,12 and 14 are unused.

. 68000 Microprocessor chip hardware

The 68000 microprocessor is housed in a 64-pin dual in-line package
(DIP). This convention is intended to distinguish between signals that are
active in low or logic-0 state and signals that are active in the high or logic-
1 state.

The 68000 microprocessor operates from +5 volts, connected to two
pins labeled Vcc, and using two ground pins labeled GND. The clock inputs
is a TTL-level signal that can have a frequency of up to 10 MHz.

The 68000 is called a 16-bit microprocessor because its basic unit of
information, the word, is 16 bits wide. The 68000 identifies an external
device by transmitting its unique address throughout the system over 23
address bus lines. The 68000 notifies all system devices that a valid
address is on the address bus by asserting the address strobe signal.

Internal Architecture of the 68xxx

They employ a high-performance, pipelined, internal architecture. That is, multiple
processing units are used to implement dedicated operations concurrently. This parallel
processing leads to the high performance. The microprocessor’s internal architecture has
bus controller and instruction cache unit, instruction prefetch and decode unit,
sequencer and control unit, and execution unit.

The bus controller and instruction cache are at the 68xxxx’s interface to the outside
world. Meaning, this section provides the 32-bit data over which data are transferred
during read, write, and interrupt acknowledge bus cycles. The bus controller produces
the control signals that are required to coordinate data transfers over the bus.

The on-chip memory provided in the instruction cache is used to store in instructions
that were most recently fetched from the main memory. That is, a small segment of code
is to be reexecuted while it is still in the cache, the instructions held in the cache will be
used instead of requiring the instructions to be refetched from the cache.

Internal Architecture

Instruction prefetch and decode unit provides the mechanism for simultaneous
fetch, decode, and execution of instructions. At a given time, the processor
may be working on three words of an instruction or three separate sequential
word-sized instructions.

The objective of this part of the pipelined architecture is to eliminate the
amount of time in an instruction’s execution that represented the fetch and
decode operations. This can be achieved because the operations are done while
the previous instructions is still being executed. This makes it fast.

Execution unit is to read decoded instructions from the output of the decode
unit and perform the operations defined by the instructions. It contains the

ALU.

Sequencer and control units coordinate the overall operations of all the
processing units.

